Proposition.
Let f: Y \to Z be a continuous map of topological spaces. Let z be a point of Z. Then f^{-1}(\{z\}) = \{z\} \times_Z Y as topological spaces.
More generally, let g: X\to Z is a morphism and x \in X. Let \pi: X \times_Z Y \to X be the pullback of f along g. Then \pi^{-1}(x) = f^{-1}(g(x)) as topological spaces.
More generally, let g: X\to Z is a morphism and x \in X. Let \pi: X \times_Z Y \to X be the pullback of f along g. Then \pi^{-1}(x) = f^{-1}(g(x)) as topological spaces.
Explanation: The scheme structure on \{z\} is \text{Spec}\kappa(z), spectrum of the residue field at z.
--------------------------
Defn. Scheme-theoretic Fiber. Let f: Y \to Z be a continuous map of topological spaces. Let z be a point of Z. Then we could assign f^{-1}(\{z\}) the scheme structure of \{z\} \times_Z Y as topological spaces via the natural identification in the above proposition. We call \{z\} \times_Z Y is scheme-theoretic preimage of z, or fiber of f above z, and also denote it by f^{-1}(z).
If Z is irreducible, the fiber above the generic point of Z is called the generic fiber of f.
Note: Finite morphisms have finite fibers.
---------------------------
Example. Projection of the parabola y^2 = x to the x-axis over \mathbb{Q}. This corresponds to a map of Spec f: \text{Spec} \mathbb{Q}[x,y]/(y^2 - x) \to \text{Spec} \mathbb{Q}[x] induces by the ring map \mathbb{Q}[x] \to \mathbb{Q}[x,y]/(y^2 - x) given by x \mapsto x.
Preimage of 1 is two points \pm 1. \kappa(x-1) = \mathbb{Q}[x]/(x-1) (since (x-1) is maximal). So
f^{-1}(x-1) = \text{Spec} \mathbb{Q}[x,y]/(y^2 - x) \times_{\text{Spec} \mathbb{Q}[x]$} \text{Spec}\mathbb{Q}[x]/(x-1)
i.e. \text{Spec }\left( \mathbb{Q}[x,y]/(y^2 - x) \otimes_{ \mathbb{Q}[x]}\mathbb{Q}[x]/(x-1) \right).
The latter is equal to
\text{Spec}\mathbb{Q}[x,y]/(y^2 -x, x- 1) = \text{Spec}\mathbb{Q}[y]/(y^2-1).
This is simply
\text{Spec} \mathbb{Q}[y]/(y-1) \sqcup \text{Spec} \mathbb{Q}[y]/(y+1).
Preimage of 0 is a non-reduced point
\text{Spec}\mathbb{Q}[x,y]/(y^2 -x, x) = \text{Spec}\mathbb{Q}[y]/(y^2).
Preimage of -1 is a non-reduced point of "size 2 over the base field"
\text{Spec}\mathbb{Q}[x,y]/(y^2 -x, x+1 ) = \text{Spec}\mathbb{Q}[y]/(y^2+1) \cong \text{Spec}\mathbb{Q}[i] = \text{Spec}\mathbb{Q}(i).
Preimage of generic point is a non-reduced point of "size 2 over the residue field"
\text{Spec }\left( \mathbb{Q}[x,y]/(y^2 - x) \otimes_{ \mathbb{Q}[x]}\mathbb{Q}(x)\right) \cong \text{Spec }\left( \mathbb{Q}[y] \otimes_{ \mathbb{Q}[y^2]}\mathbb{Q}(y^2)\right) .
The latter is simply \text{Spec} \mathbb{Q}(y). Note that [\mathbb{Q}(y): \mathbb{Q}(x)] = [\mathbb{Q}(y): \mathbb{Q}(y^2)] = 2.
Notice: In all cases above, the fiber is an affine scheme whose vector space dimension over the residue field is 2.
No comments:
Post a Comment