Saturday, December 10, 2016

Interpreting Fibers as Fiber Product


Proposition. Let $f: Y \to Z$ be a continuous map of topological spaces.  Let $z$ be a point of $Z$. Then $f^{-1}(\{z\}) = \{z\} \times_Z Y$ as topological spaces.

More generally, let $g: X\to Z$ is a morphism and $x \in X$. Let $\pi: X \times_Z Y \to X$ be the pullback of $f$ along $g$. Then $\pi^{-1}(x) = f^{-1}(g(x))$ as topological spaces.



Explanation:  The scheme structure on $\{z\}$ is $\text{Spec}\kappa(z)$, spectrum of the residue field at $z$.
--------------------------
Defn. Scheme-theoretic Fiber. Let $f: Y \to Z$ be a continuous map of topological spaces.  Let $z$ be a point of $Z$. Then we could assign $f^{-1}(\{z\}) $ the scheme structure of  $\{z\} \times_Z Y$ as topological spaces via the natural identification in the above proposition. We call $\{z\} \times_Z Y$  is scheme-theoretic preimage of $z$, or fiber of $f$ above $z$, and also denote it by $f^{-1}(z).$

If $Z$ is irreducible, the fiber above the generic point of $Z$ is called the generic fiber of $f$.

Note: Finite morphisms have finite fibers.

---------------------------
Example. Projection of the parabola $y^2 = x$ to the $x$-axis over $\mathbb{Q}$. This corresponds to a map of Spec $f: \text{Spec} \mathbb{Q}[x,y]/(y^2 - x) \to \text{Spec} \mathbb{Q}[x]$ induces by the ring map $\mathbb{Q}[x] \to \mathbb{Q}[x,y]/(y^2 - x)$ given by $x \mapsto x$.

Preimage of $1$ is two points $\pm 1$.  $\kappa(x-1) = \mathbb{Q}[x]/(x-1)$ (since $(x-1)$ is maximal). So
$$f^{-1}(x-1) =  \text{Spec} \mathbb{Q}[x,y]/(y^2 - x) \times_{\text{Spec} \mathbb{Q}[x]$} \text{Spec}\mathbb{Q}[x]/(x-1)$$
i.e. $$ \text{Spec }\left( \mathbb{Q}[x,y]/(y^2 - x) \otimes_{ \mathbb{Q}[x]}\mathbb{Q}[x]/(x-1) \right).$$
The latter is equal to
$$\text{Spec}\mathbb{Q}[x,y]/(y^2 -x, x- 1) = \text{Spec}\mathbb{Q}[y]/(y^2-1).$$
This is simply
$$\text{Spec} \mathbb{Q}[y]/(y-1) \sqcup \text{Spec} \mathbb{Q}[y]/(y+1).$$

Preimage of $0$ is a non-reduced point
$$\text{Spec}\mathbb{Q}[x,y]/(y^2 -x, x) = \text{Spec}\mathbb{Q}[y]/(y^2).$$

Preimage of $-1$ is a non-reduced point  of "size 2 over the base field"
$$\text{Spec}\mathbb{Q}[x,y]/(y^2 -x, x+1 ) = \text{Spec}\mathbb{Q}[y]/(y^2+1) \cong \text{Spec}\mathbb{Q}[i] = \text{Spec}\mathbb{Q}(i).$$

Preimage of generic point is a non-reduced point of "size 2 over the residue field"
$$ \text{Spec }\left( \mathbb{Q}[x,y]/(y^2 - x) \otimes_{ \mathbb{Q}[x]}\mathbb{Q}(x)\right) \cong \text{Spec }\left( \mathbb{Q}[y] \otimes_{ \mathbb{Q}[y^2]}\mathbb{Q}(y^2)\right) .$$
The latter is simply $\text{Spec} \mathbb{Q}(y)$. Note that $[\mathbb{Q}(y): \mathbb{Q}(x)] = [\mathbb{Q}(y): \mathbb{Q}(y^2)] = 2$.


Notice: In all cases above, the fiber is an affine scheme whose vector space dimension over the residue field is $2$.

No comments:

Post a Comment