Monday, December 12, 2016

Underlying set of affine schemes


Examples: (using division algorithm we can find points of the first three schemes)
  • $\text{Spec} \mathbb{C}[x]$: closed points and generic pt;
  • $\mathbb{A}^1_k$ for algebraically closed $k$: same;
  • $\mathbb{A}^1_k$ for any $k$ has infinitely many point (imitate Euclid's proof of infinitude of primes). 
  • $\text{Spec}\mathbb{Z}$;
  • $\text{Spec} k$;
  • $\text{Spec}k[\epsilon]/(\epsilon^2)$ where $k[\epsilon]/(\epsilon^2)$ is called the ring of dual numbers;
  • $\mathbb{A}^1_{\mathbb{R}}= \text{Spec} \mathbb{R}[x] = \{(0), (x-a), (x^2 + ax + b) \mid \text{irreducible}\}$ (use the fact that $\mathbb{R}[x]$ is a UFD.)
    Note that the $(x-a)$ are maximal ideals $(x^2 + ax + b)$ as the corresponding quotients are always fields. In particulat, $\mathbb{R}[x]/(x^2 + ax + b) \cong \mathbb{C}$.
    So $\mathbb{A}^1_{\mathbb{R}} is the complex plane folded along real axis, where Galois-conjugate points are glued. 
  • $\mathbb{A}^1_{\mathbb{Q}}$
  • Closed points of $\mathbb{A}^n_{\mathbb{Q}}$ are just Galois-conjugate glued together
  • $\mathbb{A}^1_{\mathbb{F}_p} = \{(0), (f(x))\mid \text{ irreducible }\}$ (use the fact that $\mathbb{F}_p[x]$ is a Euclidean domain)
    Think of $f \leftrightarrow$ roots of $f$ (i.e. set of Galois conjugates in $\overline{\mathbb{F}_p}.$
    $\mathbb{A}^1_{\mathbb{F}_p}$ is bigger than $\mathbb{F}_p$. A polynomial $f(x)$ is not determined by its value at $\mathbb{F}_p$ (e.g. $x^p - x$), but it is uniquely determined by its valued on $\mathbb{A}^1_{\mathbb{F}_p}$ (as it is a reduced scheme). 
  • $\mathbb{A}^2_{\mathbb{C}} = \text{Spec} \mathbb{C}[x,y] = \{(0), (x-a, y-b), f(x,y) \mid f \text{ irreducible}\}.$
  •  $\mathbb{A}^n_{\mathbb{C}} $

No comments:

Post a Comment