$L$-valued points of $\mathbb{P}^n(k)$ are Classical Points
Let $\overline{x}: \text{Spec} L \to \mathbb{P}^n$ be an $L$-valued point of $\mathbb{P}^n(k)$ with image $x$. Then $x$ lies in one of the pieces $X_i = \text{Spec} A_i$ where $$A_i = k\left[\frac{t_0}{t_i}, \ldots, \frac{t_n}{t_i}\right].$$ So $\overline{x}$ corresponds to a morphism $\sigma_i: A_i \to L$, so we can associate to it the point $$\left[\sigma_i\left(\frac{t_0}{t_i}\right) : \ldots: 1 :\ldots: \sigma_i\left(\frac{t_n}{t_i}\right)\right]$$ of $P^n(L)$.Well-defined.
This assignment is well-defined. Indeed, if $x \in X_j$ also, then $\overline{x}$ factors through $X_i \cap X_j$. This means that $\sigma_i$ and $\sigma_j$ \emph{extends} to a homomorphism $$\sigma_{ij}: A_{ij} = k\left[t_0, \ldots, t_n, \frac{1}{t_i}, \frac{1}{t_j}\right] \to L.$$Then we can write $$\left[\sigma_j\left(\frac{t_0}{t_j}\right) : \ldots: \sigma_j\left(\frac{t_n}{t_j}\right)\right] $$ as $$\left[\sigma_{ij}\left( \frac{t_i}{t_j}\right)\sigma_i\left(\frac{t_0}{t_i}\right) : \ldots: \sigma_{ij}\left( \frac{t_i}{t_j}\right)\sigma_i\left(\frac{t_n}{t_i}\right)\right]$$ which is the same as $$\left[\sigma_i\left(\frac{t_0}{t_i}\right) : \ldots: \sigma_i\left(\frac{t_n}{t_i}\right)\right].$$
Bijection
For each choice of element of $X_i$ we get a unique morphism $\sigma_i: A_i \to L$ and hence from $\text{Spec} L \to X_i \to X$.
If $k= \overline{k}$ then closed points of $\mathbb{P}^n(k)$ are Classical Points
It suffices to show that for $k$ algebraically closed, and $X$ any scheme over $k$ i.e. with a canonical morphism $X \to \text{Spec }k$.
$$ k\text{-points of $X$} \leftrightarrow \text{ closed points of $X$}.$$
Notice that for every point $x \in X$, restricting the canonical morphism to an affine piece piece $\text{Spec} A$ over $X$ gives a homomorphism $k \to A$. Thus this induces a map $k \to \kappa(x)$
Indeed let $\overline{x}: \text{Spec} k \to X$ be a $k$-point with image $x$. Then, as this is a morphism of schemes, we have an induced map on function fields $\kappa(x) \to k$ compatible with the canonical morphism $k \to \kappa(x)$. So we must have $\kappa(x) \cong k$ canonically. On the other hand $\kappa(x) = \text{Frac}(A/\mathfrak{p}_x) \supset A/\mathfrak{p}_x \supset k$
Do I need $A$ to be finitely generated?
No comments:
Post a Comment